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Gasdynamic wave interaction in two
spatial dimensions
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We examine the interaction of shock waves by studying solutions of the two-
dimensional Euler equations about a point. The problem is reduced to linear form by
considering local solutions that are constant along each ray and thereby exhibit no
length scale at the intersection point. Closed-form solutions are obtained in a unified
manner for standard gasdynamics problems including oblique shock waves, Prandtl–
Meyer flow and Mach reflection. These canonical gas dynamical problems are shown
to reduce to a series of geometrical transformations involving anisotropic coordinate
stretching and rotation operations. An entropy condition and a requirement for
geometric regularity of the intersection of the incident waves are used to eliminate
spurious solutions. Consideration of the downstream boundary conditions leads to
a formal determination of the allowable downstream matching criteria. By retaining
the time-dependent terms, an approach is suggested for future investigation of the
open problem of the stability of shock wave interactions.

1. Introduction
Riemann problems in two spatial dimensions are germane to many problems in

experimental, analytical and computational gasdynamics. Familiar examples include
the interaction of oblique shock waves in steady supersonic flow, the self-similar
problem of transition to Mach reflection from a wedge and the treatment of discon-
tinuous shock fronts in numerical shock fitting algorithms.

The well-known approach to the interaction of shock waves has its basis in the work
of Rankine (1870) and Hugoniot (1889) regarding the propagation of shock waves.
The solution for oblique shock waves was then obtained by Meyer (1908) through a
Galilean transformation that imposed a velocity component parallel to the shock front.
Also due to Meyer is the development of the Prandtl–Meyer function for expansion
through an expansion fan. The development of the theory of shock wave interactions
by Courant, Friedrichs, von Neumann and independently by Weise is described by
Courant & Friedrichs (1948). By hypothesizing the existence of a vortex sheet at the
intersection point, solutions for several interacting shock waves and/or expansion
fans may be constructed that are consistent with the experimental observations. A
similar approach has been developed for shock–shear layer interactions. The interac-
tion solutions are represented graphically by the intersection in the pressure–flow
deflection angle, p–δ, plane of the loci of possible downstream states for the interacting
waves. Because of the nonlinear interaction of the waves, problems of non-uniqueness
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and non-existence of solutions arise, with the Mach reflection problem being one
classic example (e.g. Courant & Friedrichs 1948; Hornung 1986; Samtaney & Pullin
1996 and originally Mach).

The development of computational algorithms for the simulation of gasdynamics
problems has benefited greatly from use of so-called Riemann solvers (Roe 1981). In
this method, local interpolation of the solution is based on a local physical solution
to a one-dimensional unsteady gasdynamics problem rather than a non-physical high-
order polynomial function. Direct solution of the one-dimensional unsteady Riemann
problem is simplified by the fact that the equations describing the local solution remain
hyperbolic for all initial conditions. Computational approaches that explicitly track
the locations of strong shock waves have spurred great progress in the understanding
of shock interactions since explicit solutions are now required for all situations of
interactions between waves that might occur in the time evolution of the solution.
In a frame of reference fixed to a shock intersection point, this requires the solution
of a Riemann problem in two spatial dimensions only (not time). The problem in
two spatial dimensions involves an additional difficulty caused by the possibility of
mixed hyperbolic–elliptic equations with subsonic flow occurring in an arc about the
intersection point. This complicates the geometrical construction of the local solution
with (p, δ) plane methods because of the case distinctions that arise as the number
of parameters is increased and the difficulty in determining the nature of the limiting
cases at the boundaries of the interaction regimes. Further, since the solutions are
synthesized arbitrarily in the (p, δ) plane, there is no understanding of the complete
set of possible interactions (see Courant & Friedrichs 1948 for discussion). Given
this ambiguity, it has proved helpful to apply concepts from bifurcation theory in
order to elucidate the non-uniqueness and non-existence problems that arise in the
complex manifolds of possible solutions (see for example the review by Glimm 1988).
The most complete description of the Riemann problem for gasdynamics in two
spatial dimensions is that of Glimm et al. (1985) who unambiguously categorize the
possible forms of two-dimensional steady-flow wave interactions based on certain
physical assumptions and the fundamental solutions originally deduced by Meyer
(1908). As discussed by Glimm et al. (1985), the solutions for the interaction problem
in two spatial dimensions represent the elementary waves for the open two-dimen-
sional Riemann problem (two spatial dimensions and time). Attempting now to put
the current study in context, we formulate the problem in two spatial dimensions
and time, but immediately reduce the problem to one angular dimension and time
by a scaling argument. Consideration of steady-flow solutions reduces the problem
to one angular dimension only and we obtain solutions largely equivalent to those
of Glimm et al. (1985), but by novel means. Given the steady-flow solutions in one
angular coordinate, we return briefly to consider the unsteady problem in one angular
coordinate and time, and indicate a path that appears to hold promise for future
investigation of the open problem of the stability of steady-flow shock-wave interac-
tions. Finally, we note the relationship of the current study where we work in a
cylindrically symmetric polar coordinate system to that of Taylor & Maccoll (1933)
who derive results in an axially symmetric polar coordinate system; in both cases,
solutions are sought that are constant along a ray to reduce the problem to an o.d.e.
in one angular coordinate.

The present study arises out of an experimental investigation of shock interference
heating on blunt bodies at the GALCIT T5 hypervelocity shock tunnel (e.g. Sanderson
1995; Samtaney & Meiron 1997; Sanderson, Hornung & Sturtevant 2003). In order
to determine the effect of caloric imperfections, the (p, δ) plane analysis method was
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extended to consider the chemically frozen and equilibrium limits of Lighthill’s IDG
model. The same difficulties of non-uniqueness and non-existence arise as discussed
above. In both the frozen and equilibrium limits, the inviscid conservation equations
retain the property of the Euler equations for flow of perfect gas whereby the equations
are free of any fundamental length scale. In order to study chemical non-equilibrium
effects on shock-wave interactions, whereby finite-rate chemical kinetics provide a
fundamental length scale, it was proposed to construct a polar grid centred at the
intersection point and solve numerically for the flow field. The interaction of the
chemical scales and the fluid mechanical scales imposed by the external boundary
conditions introduce phenomena that are not observed in perfect gas flows. The
chemically frozen and equilibrium solutions obtained from the polar analysis form
the boundary conditions for the computation at r → 0 and r → ∞, respectively. This
leads to the formulation of conservation equations in (r, θ)-coordinates. It is apparent
that analytical treatment of the conservation equations in the θ direction in the limit
r → 0 might lead to further insight.

The analysis that follows is based on the hypothesis that the flow variables remain
piecewise differentiable about the shock-wave intersection point. Given this assump-
tion, it is possible to scale the conservation equations about the intersection point and
seek local solutions that are constant along rays passing through the intersection point.
The resulting local solutions therefore exhibit no length scale. Under this scaling, the
conservation equations are shown to reduce exactly to a system of linear ordinary
differential equations in one angular coordinate, θ , about the intersection point. A
simple analytical solution follows from the requirement for 2π periodicity and the
specification of an initial condition on the incoming streamline. This solution is simply
the trivial case of uniform flow, and importantly, its uniqueness is conditional on the
non-singularity of the Jacobian matrix giving the derivatives of the θ-fluxes of the
conserved quantities with respect to the primitive variables. The singularities so ob-
tained may be reconciled with the conventional method-of-characteristics interpreta-
tion for non-homentropic flow. Each singularity of the Jacobian yields a family of
solutions and further examination leads to a complete set of closed-form singular
solutions. The central singular solution is familiar as a Prandtl–Meyer expansion and
here a simple geometrical interpretation is obtained. Other singular behaviours are
observed relating to the growth of the shear layer originating at shock intersection
points. Weak solutions of the conservation equations may also be obtained under this
approximation. This leads explicitly to the admissibility of oblique shock waves,
shear layers and the inviscid wall-boundary condition as the complete set of
solutions.

Solutions to standard shock-wave interaction problems may be obtained under
certain additional assumptions. By imposing a condition of geometric regularity on
the intersection of the incident waves and the usual entropy condition, solutions
are formally restricted to not more than two incident rays and two outgoing waves.
We go on to demonstrate the possible downstream matching conditions. With these
restrictions formally established, it is possible to determine the complete set of locally
scale-free solutions to the Euler equations about a point.

Much of this analysis reproduces results from classical gasdynamics in a different
framework. The simple treatment and results offered here do not appear to be known
in the literature. The justification for the current approach lies in the fact that the
complete set of admissible solutions is obtained via a constructive process as the
consequence of clearly defined assumptions. This rigour and completeness cannot be
obtained from the conventional synthesis of solutions with polars in the pressure–flow
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(r, θ)

Figure 1. Region in vicinity of Mach reflection flow field that exhibits no length scale in the
vicinity of the shock-wave intersection point.

deflection angle plane based on the fundamental wave solutions deduced by Meyer
(1908).

2. Solutions of the Euler equations about a point in cylindrical coordinates
Applying Reynolds transport theorem to the principles of mass, momentum and

energy conservation and employing the appropriate metrics for cylindrical coordinates
we obtain the following differential equations for the conserved quantities:
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Here, u2 = u2
r + u2

θ , e =CvT is the specific internal energy and the remaining symbols
have their usual meanings.

In order to examine the possible local solutions in the immediate vicinity of the
intersection point, we consider solutions where radial variations are sufficiently small
that they may be neglected. That is, the r derivatives of the dependent variables vanish.
Such a reduction may always be obtained locally for radii that are small with respect
to length scales imposed by the boundary conditions away from the intersection
point with the additional assumption that the dependent variables remain piecewise
differentiable (see figures 1 and 2). Equations (2.1)–(2.4) reduce to

r
∂

∂t
A(z) +

∂

∂θ
B(z) + C(z) = 0 (2.5)
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(r, θ)

z(θ0) = z0

z(θ0 + 2π) = z(θ0)

Integrate
w.r.t. θ

Figure 2. Integration of length-scale-free o.d.e.s about the shock intersection point with
periodic boundary conditions.
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Here, for a perfect gas, ρe = p/(γ − 1) and
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ρ
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p


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Consider now steady solutions of this system of equations

d

dθ
B(z) + C(z) = 0 (2.8)

with

z(θ0) = z0, (2.9)

z(θ0 + 2π) = z(θ0). (2.10)

This set of o.d.e.s giving the equilibrium solutions can be integrated (in the sense
of classical solutions) with respect to θ from an appropriate free-stream boundary
condition (see figure 2). The issue of shock waves and other weak solutions will be
addressed shortly.

Forming the Jacobian matrix, Bz , giving the derivatives of the θ-fluxes with respect
to the primitive variables, z, (2.8) may be expressed in normal form
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For the given fluxes, it follows that

Bz =




uθ 0 ρ 0

uruθ ρuθ ρur 0

u2
θ 0 2ρuθ 1

1
2
uθu

2 ρuruθ

γp

γ − 1
+ 1

2
ρu2 + ρu2

θ

γ uθ

γ − 1


 (2.12)



192 S. R. Sanderson

y

uθ

uur

ux = u0

uy = u1

x

θ

δ

Figure 3. Interpretation of solution as a constant thermodynamic state with velocity
components varying according to a rotational transformation about the intersection point.

and after some manipulation it is possible to show that
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The thermodynamic variables separate from the velocity components in the solution
and are constant with respect to θ . Eliminating uθ , it follows that

d2ur

dθ2
+ ur = 0, (2.14)

with general solutions

ur = u0 cos θ + u1 sin θ, (2.15)

uθ =
dur

dθ
= −u0 sin θ + u1 cos θ. (2.16)

We identify this form as a coordinate rotation through an angle θ and so u0 and
u1 are identifiable as the Cartesian x and y components, respectively, of the velocity
vector. With respect to the local flow deflection angle, δ, we therefore have[

ux

uy

]
=

[
u0

u1

]
=

[
u cos δ
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]
(2.17)

and it follows that[
ur

uθ

]
= u

[
cos θ sin θ

− sin θ cos θ

] [
cos δ

sin δ

]
= u

[
cos(θ − δ)

− sin(θ − δ)

]
. (2.18)

The solution we have obtained is that of completely uniform flow in the vicinity of
the point. The solution represents a constant thermodynamic state with respect to θ

(i.e. p = constant, ρ = constant) and the velocity components vary according to the
angle of rotation of the coordinate system about the origin (see figure 3). This great
simplification should come as no surprise given the original hypothesis of solutions
without a length scale.



Gasdynamic wave interaction 193

3. Singular solutions
Having dealt with the regular solution we now turn to the more interesting cases

when the solution obtained is not unique, that is, when |Bz| =0. In fact

|Bz| =
ρu2

θ

γ − 1

(
γp − ρu2

θ

)
. (3.1)

Note that |Bz| ∼ M2
θ (1 − M2

θ ); however, the dimensional form retains important cases
where ρ, p → 0. Three cases arise such that |Bz| =0:

(a) p = ρu2
θ/γ ; this corresponds to a Mach line where M2

θ =1.
(b) u2

θ = 0; this double root corresponds to the convective streamline passing
through the intersection point.

(c) ρ = 0; this root is identified with the situation of maximum turning to a vacuum
through a Prandtl–Meyer expansion.
In what follows, we introduce the notation Mθ = uθ/a and Mr = ur/a for the velocity
components normalized with respect to the local speed of sound. It is meaningful
to describe the components of a Mach number in this way since it is well known
that the Rankine–Hugoniot conditions for oblique shock waves are identical to those
for a normal shock provided that velocity components normal to the wavefront are
employed. Further, we allow Mθ and Mr to take negative values, as required by the
sign of the respective velocity components in the current coordinate system. Although
unconventional, this is required to preserve the generality of the formulation and
poses no difficulty. Note that the characteristic directions obtained from method-of-
characteristics analysis for the general case of non-homentropic flow are reflected in
the singularities of Bz . The singularities M2

θ = 1 correspond to the acoustic charac-
teristics that propagate the Riemann invariants. The streamline singularities, u2

θ = 0,
propagate the entropy and stagnation enthalpy invariants.

3.1. Singular solutions for M2
θ = 1

Consider initially the family of singular solutions that arise in the case M2
θ = 1. Retain-

ing only the first three of (2.8) and eliminating p according to p = ρu2
θ/γ we have the

reduced system of equations
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Again, after some manipulation we obtain
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Again the velocity components decouple from the thermodynamic quantities. Define

Γ 2 =
γ − 1

γ + 1
. (3.4)
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Eliminating uθ between the second and third of (3.3) it follows that

d2ur

dθ2
+ Γ 2ur = 0 (3.5)

with general solution

ur = u0 cos(Γ θ) + u1 sin(Γ θ). (3.6)

The arbitrary coefficients u0 and u1 are distinct from those introduced previously. It
follows immediately that

uθ = −u0Γ sin(Γ θ) + u1Γ cos(Γ θ). (3.7)

Multiplying ur by Γ and expressing in matrix form:[
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]
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]
. (3.8)

Inverting this expression we can determine the unknown coefficients, u0 and u1,
according to the conditions existing at some point θ = θ1 within the singular region.
With the coefficients thus determined, we then have the solution for all other points
θ = θ2 within the singular region. After manipulation we have;[

Γ ur2
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]
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Thus, (3.9) relates all points within the singular region, including the special case where
θ1 and θ2 are taken to be the upstream and downstream boundaries of the singular
region. We see that the family of singular solutions for M2

θ = 1 may be interpreted
as an anisotropic stretching operation in the radial direction, followed by a rotation
operation through angle

√
(γ − 1)/(γ + 1)(θ2 − θ1) and a complementary anisotropic

stretching in the rotated frame. Non-dimensionalizing by uθ1
and since ur1

/uθ1
=

cot(δ1 − θ1) (see figure 3):
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Thus, the radial and tangential velocity ratios are parameterized by the single variable
θ2 for given upstream conditions, θ1 and δ1.

It remains to integrate the first of (3.3). A more convenient approach is to observe
that M2

θ = 1, or Mθ = ±1, for all θ in the singular family of solutions and to express
the remaining quantities in term of the known values of uθ2

/uθ1
and ur2

/ur1
so that
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Since adiabatic reversible flow is generally isentropic, then for a perfect gas we have
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Finally, the downstream flow deflection angle is determined from

cot(δ2 − θ2) =
ur2

uθ2

=
ur2

ur1

ur1

uθ1

uθ1

uθ2

=
ur2

ur1

uθ1

uθ2

cot(δ1 − θ1). (3.14)

The above family of solutions is in fact synonymous with that obtained by Prandtl
and Meyer for an expansion fan acting over local Mach angles θ1 to θ2. The singular
cases when |B1z1

| =((γ + 1)/γ )ρ2u3
θ = 0 are special cases of the singularities of the

original equations and these are treated in the following sections.

3.2. Singular solutions for u2
θ = 0

We identify the case u2
θ = 0 with the two characteristic directions that typically arise

along the streamline direction. For non-homentropic flow, the invariant quantities
along the two streamline oriented characteristics are entropy and stagnation enthalpy.
In the case of u2

θ = 0, the Jacobian, Bz , reduces to
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such that
dB2(z)
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dθ

+ C2(z) = 0. (3.16)

From the first of these equations, it immediately follows that

ρur = 0 (3.17)

and from the third that
∂p

∂θ
= 0. (3.18)

Excluding for the moment the case ρ = 0, which will be discussed in the following
section, we are left with the family of singular solutions ur = 0, uθ = 0, p(θ) = con-
stant, and ρ(θ) remains undetermined. Physically, this solution represents a non-
homenthalpic stagnation point where the density and hence temperature and enthalpy
are allowed to vary arbitrarily with θ .

3.3. Singular solutions for ρ = 0

In the case of ρ =0, the Jacobian, Bz , reduces to
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such that
dB3(z)

dz
dz
dθ

+ C3(z) = 0. (3.20)

The first two of these equations are trivially satisfied under the constraint ρ = 0.
The fourth equation is also trivially satisfied since p = ρRT = 0. The third remaining
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equation reduces to

∂p

∂θ
= 0 (3.21)

or p = constant. Again, we find that p = ρRT = 0. We are left with the family of sin-
gular solutions ρ = 0, p = 0 with ur (θ) and uθ (θ) remaining undetermined. Physically,
this solution represents the state obtained after expansion to a vacuum.

4. Weak solutions of the Euler equations about a point
Having examined the regular and singular solutions admitted by the Euler equations

about a point, we now consider weak solutions of the conservation equations (2.5)
under the original assumptions that the local solutions lack a length scale and that
the dependent variables remain piecewise differentiable. We seek weak solutions that
satisfy the conservation equations in the integral sense of
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By the Leibniz rule,
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Here, β̇ = ∂β/∂t and β± = limζ→0 β ± ζ . The first integral tends to zero in the limit
ζ → 0 when A remains finite. We are left with

−rβ̇	[A] + 	[B] = 0, (4.3)

where 	[·] represents the jump in the prescribed quantity at location β . Consider
now the steady solutions
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From the first of these it follows that
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= 1 (4.5)

and from the second that

ur1
=

ρ2uθ2

ρ1uθ1

ur2
= ur2

, ρ1uθ1
�= 0. (4.6)

We must therefore consider the regular case whereby the conservation of both mass
and radial momentum determine that 	[ur ] = 0, and the singular case whereby
ρ1uθ1

= 0.
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4.1. Regular weak solutions

In the regular case considered above, 	[ur ] = 0, the remaining equations reduce
directly to:

	




ρuθ

ρu2
θ + p(

γp

γ − 1
+ 1

2
ρu2

)
uθ


=0, (4.7)

with solutions:

ρ2

ρ1

=




1,

(γ + 1)M2
θ1

2 + (γ − 1)M2
θ1

,
(4.8)

p2

p1

=




1,

1 + γ
(
2M2

θ1
− 1

)
γ + 1

,
(4.9)

uθ2

uθ1

=
ρ1

ρ2

. (4.10)

Clearly, these solutions reproduce the well-known behaviour of oblique shock waves
whereby the solutions are obtained using components normal to the shock front.
Further, it is known that only waves with M2

θ1
> 1 are entropy producing with M2

θ2
< 1.

4.2. Irregular weak solutions

In the irregular case considered above, ρ1uθ1
= 0, the equations reduce to;

	[B] = 	

[
p

puθ

]
= 0. (4.11)

Excluding the exceptional case ρ1 = 0 then p2 = p1, uθ2
= uθ1

= 0 and 	[ρ] and 	[ur ]
remain undetermined. This formally admits a shear layer as a weak solution of
the Euler equations about a point. In the further degenerate case, ur2

= 0, we have
described a wall boundary condition such as occurs in the case of flow over a wedge
or the free streamline boundary that occurs in the expansion of a supersonic jet. The
exceptional case, ρ1 = 0, arises when the shear layer or wall coincides with a turning
expansion of the flow to a vacuum.

5. Synthesis of solutions
At this point, we have studied the solutions of the Euler equations about a point

and have examined the set of solutions that may arise. Specifically we find:
(a) A regular solution that corresponds to uniform flow.
(b) Families of singular solutions that arise,

when M2
θ = 1,

when u2
θ = 0,

when ρ = 0.
(c) Families of weak solutions

that satisfy the Rankine–Hugoniot relations for oblique shock waves,
that arise when ρuθ = 0 and admit shear layers and wall boundary conditions.

These solutions have been obtained via a constructive process from the two-dimen-
sional Euler equations and follow from the simple assumptions that the local flow field
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j ) (k) (l)

rh0 = 0

p = const

p = const

Figure 4. Unification of classical gasdynamics problems.

exhibits no length scale and remains piecewise differentiable. It comes as no surprise
therefore that this formulation appears to unify many of the classical problems of
gasdynamics (see figure 4). In the context of Glimm et al. (1985), we have obtained a
complete set of elementary waves in one angular coordinate. To address the further
goal of defining a complete set of wave interactions in one angular coordinate,
additional development is required and this is elaborated in the following sections.

5.1. Prototypical interaction problem

Generally, we see that complex wave-interaction configurations can be represented
within the current framework (see figure 5). We will use the configuration shown in
figure 5 as a specific example of the problems that arise in attempting to integrate the
equations for shock-wave-interaction problems. Our goal here is to use the properties
derived for the elementary waves in the previous sections to restrict the space of
possible solutions, leaving only the set of allowable wave interactions.
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Mθ = maximum

Mθ = maximum

Mθ > 1

Mθ > 1

Mθ > 1

Mθ > 1 Mθ < 1

Mθ < 1

Mθ < 1

Mθ < 1

Mθ = 0

Mθ = 0

Mθ = 0

Mθ = 1

Mθ = 1

θ = θs–

θ = θs+θ = θ0

p = const

θ

Figure 5. Synthesis of wave interaction solutions from elementary waves.

Recall that (2.13) are singular for uθ = 0 and that the weak shear-layer solution that
applies when uθ = 0 (see § 4.2) is inadequate for propagating all of the flow variables
across the boundary. Under no circumstances can the solution therefore be continued
across a ray where uθ = 0. We therefore begin the solution from either side of the
incident streamline at θ

±
0 = [π − δ0]

± where the free-stream conditions are specified at
the upstream flow-deflection angle, δ0. Integrating from θ = θ−

0 in the −θ -direction,
the tangential Mach number, |Mθ |, increases from the initial value of zero. Eventually
|Mθ | =1 and the system of equations becomes singular as discussed previously. At
this point we choose to insert a singular compression fan and maintain |Mθ | =1
over a region of arbitrary angle, as determined by hypothetical upstream boundary
conditions. Exiting the singular region, |Mθ | continues to increase so that |Mθ | > 1.
Again based on hypothetical upstream boundary conditions we choose to insert a
shock wave and so downstream of the shock wave |Mθ | < 1 (see § 4.1). Continuing the
integration, |Mθ | continues to increase until a maximum is reached when the ray is
perpendicular to the local streamline direction. Observe from (2.18) that

dMθ

dθ
=

d

dθ

(uθ

a

)
=

−u

a
cos(θ − δ) (5.1)

and so |Mθ | has a maximum when θ − δ = (n+ 1/2)π. The points where θ − δ =
(n+ 1/2)π also delineate the incident (Mr < 0, |θ − δ| > π/2) and reflected (Mr > 0,
|θ − δ| < π/2) wave regions, since (see (2.18))

Mr =
ur

a
=

u

a
cos(θ − δ). (5.2)

Beyond the point |θ − δ| = π/2, |Mθ | decreases and at some point where |Mθ | > 1
we insert an oblique shock wave so that the tangential Mach number becomes
subsonic, |Mθ | < 1. The integration continues with |Mθ | decreasing until we reach the
point, θ = θs−, that cannot be crossed since |Mθ | → 0. Similar arguments apply when
integrating from θ = θ+

0 towards θ = θs+ in the + θ-direction. Eventually, a ray is
reached where |Mθ | → 0 and again the solution cannot be continued. The incident
waves shown in figure 5 where Mr < 0 (shocks, fans, shear layers) must be specified
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on the basis of upstream conditions and the parameters for the reflected waves with
Mr > 0 are determined by the matching conditions at the two downstream rays where
Mθ = 0.

5.2. Restrictions on incident wave configurations

To this point, no constraint has been placed on the number of incident and reflected
waves and clearly we must introduce additional constraints to obtain the set of
physically meaningful solutions. We hypothesize that the following conditions produce
the desired set:

(a) Coincidence condition I: interaction configurations with a total of more than
two regular or irregular weak elementary waves (i.e. shock waves or shear layers) in
the incident wave region are disallowed.

(b) Coincidence condition II: singular regions with |Mθ | = 1 are disallowed in the
incident wave region (i.e. Prandtl–Meyer compression waves).

(c) Entropy condition: elementary waves that reduce entropy in the direction of
flow are disallowed (i.e. expansion shock waves).
Coincidence conditions I and II ensure that no more than two rays are required to
meet at a point, as is apparent from inspection of figure 5. Contrary configurations
require more than two rays to meet at a point, a requirement that is geometrically
irregular and therefore physically irrelevant. The entropy condition reflects the usual
result that for all entropy producing compression shocks, |Mθ1

| > 1 and |Mθ2
| < 1 (see

§ 4.1).

5.3. Set of allowable incident-wave configurations

Considering the possible elementary waves listed at the beginning of § 5, subject to the
conditions of § 5.2, we may logically tabulate the complete set of allowable incident
wave configurations according to the total number of waves:

(a) Zero incident waves:
a region of uniform flow,
a singular region with u2

θ = 0 throughout,
a singular region with ρ = 0 throughout.

(b) One incident wave:
a single incident entropy producing shock wave,
a single incident shear layer.

(c) Two incident waves:
two incident entropy producing shock waves (of opposite sign, or overtaking
with same sign (see figures 4a and 4b),
one incident entropy producing shock wave and one incident shear layer,
two incident shear layers (adjoined by a singular solution according to § 3.2),

(d) Configurations with more than two incident waves are geometrically irregular.
The solutions over the arcs adjoining the incident waves and throughout the incident
wave region downstream of the incident waves are limited to the remaining solutions
listed at the beginning of § 5:

regions of uniform flow,
singular regions with u2

θ = 0 throughout,
or singular regions with ρ = 0 throughout.

This represents a complete set of the possible incident wave configurations based
on the allowable elementary waves. Figure 4 represents a subset of this complete
set, drawn from flows that are familiar in classical gasdynamics. The third sub-case
of (c) above is unconventional but is admitted by the formulation and the imposed
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constraints, it is familiar as the flow that occurs at the downstream end of a wake
flow, in the inviscid limit.

Additional solutions are possible (e.g. figures 4d–4i) under the assumption that the
physical solution over certain regions are described by a different set of equations, e.g.
the equations of elasticity for the behaviour of a solid at the shock intersection point.
As before, the constraint of geometric regularity on the intersection configuration
requires that boundary conditions be imposed on no more than two rays passing
through the origin.

5.4. Entropy condition limits number of transmitted waves

The entropy condition of the previous section eliminates incident expansion shock
waves from consideration and may also be shown to concomitantly restrict the
number of reflected waves upstream of the rays where the Mθ = 0 singularities occur
to no more than one per side.

We have previously noted that for entropy producing compression shocks, |Mθ1
| > 1

and |Mθ2
| < 1. Note also that for expansion fans |Mθ | =1 throughout the singular

region. Finally, for any constant state zones in the reflected wave region, |θ − δ| < π/2,
we have |Mθ | decreasing in the downstream direction (see (5.1)). Therefore across the
entire reflected wave region comprising shocks, fans and constant state regions, |Mθ |
is decreasing or constant in the downstream direction.

If |Mθ | � 1 entering the reflected wave region, then one reflected compression shock
excludes the presence of another since |Mθ2

| < 1 for the first shock and |Mθ1
| > 1 is

impossible for the second shock since |Mθ | is always decreasing or constant. It is
impossible for a fan with |Mθ =1| to exist upstream of a shock since we require
|Mθ1

| > 1 for the shock and |Mθ | must increase upstream of the shock. It is impossible
for a fan with |Mθ = 1| to exist downstream of a shock since we require |Mθ2

| < 1 for
the shock and |Mθ | must decrease downstream of the shock. Two fans are excluded
since they, in fact, represent a single contiguous fan with |Mθ = 1| throughout.

If |Mθ | < 1 entering the reflected wave region, then no reflected waves or fans are
possible since |Mθ | is decreasing or constant in the downstream direction.

Therefore no more than one reflected shock or reflected fan is possible per side in
reflected wave region |θ − δ| < π/2.

5.5. Matching conditions at downstream singularities

Having limited the number of incident and reflected waves to a finite number (no
more than 2 incident, 2 reflected), it remains to determine the allowable matching
conditions across the singularities that occur at θ = θs± (see figure 5). Conventionally,
this requires that the pressure and flow deflection angle be matched across a shear
layer adjoining the two downstream rays where Mθ =0. Alternatively, the Mθ =0
rays may remain distinct by inserting two shear layers and a region of constant
pressure (a singular solution of the type discussed in § 3.2) as discussed previously
by Liepmann (B. Sturtevant 1991, personal communication) (see figure 4l). These
matching conditions arise rigorously from the current formulation.

5.5.1. Formal matching conditions

We have shown in § 5.4 that, at most, one reflected wave is allowable upstream
of each of θ = θs±. Downstream of these reflected waves |Mθ | � 1 and we have
demonstrated that |Mθ | is decreasing in the downstream direction. The only remaining
solutions upstream of the θ = θs± singularities are therefore constant-state solutions,
and the uniqueness of each is assured since |Bz| �=0. Therefore, we must eventually
obtain uθ =0 at the boundaries, θ → θ+

s− and θ → θ−
s+, and the only available solutions
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from the complete set obtained that can possibly adjoin the upstream constant state
regions are:

(a) a continuation of the previous constant-state solution,
(b) an irregular weak solution (shear layer).

Exceptional cases where ρ = 0 or ur = 0 simultaneously with uθ = 0 are excluded. The
first case above is the degenerate case of a shear layer with zero strength.

5.5.2. Solutions downstream of the singularities

Matching across the shear layer of case (b) of § 5.5.1, the only remaining possible
solution, there are two possibilities in each of the limits taken from the downstream
side of the singularities, θ → θ−

s− and θ → θ+
s+;

(a) uθ =0 with ur =0 and we recognize this case as a region of stagnant, potentially
non-homenthalpic fluid.

(b) uθ → 0 with ur �= 0 and we recognize this as any adjoining constant-state region
simultaneously at the condition uθ → 0.
An extended region of uθ = 0 with ur �= 0 is formally excluded by the solution of
§ 3.2 that requires ur = 0 to ensure conservation of mass. Note that in case (b), the
adjoining constant-state region is unique, moving away from the singularity since
again |Bz| �=0.

5.5.3. Simultaneous requirements for both singularities

Since the arguments of § § 5.5.1 and 5.5.2 must apply simultaneously for both
singularities, θ = θs±, and since a solution is physically required for all θ (see exception
below) the only allowable matching conditions are:

(a) that the singular non-homenthalpic regions downstream of θ = θs± be conti-
guous if case (a) of § 5.5.2 applies,

(b) that if case (b) of § 5.5.2 applies, then the pre-singularity constant state at θ+
s−

be identical to the post-singularity state at θ+
s+ and vice versa that the pre-singularity

constant state at θ−
s+ be identical to the post-singularity state of θ+

s− since each of the
constant state regions is unique, with |Bz| �=0, and since |Mθ | must increase upstream
of each of θ = θs±. This concomitantly requires that the shear layers adjoining the
pre-singularity constant states be one and the same.

These are therefore the only two matching conditions allowed by the conservation
equations for the shooting problem of matching the two solutions obtained by
integrating in the ±θ directions, respectively.

As was the case in § 5.3, a third option (the exception noted above) is that the
physical solution required between the downstream singular points θ = θs± be deter-
mined by a different set of equations, e.g. the equations of elasticity for the behaviour
of a solid at the shock intersection point.

5.5.4. Discussion

The shear-layer matched solution is well known. Nothing about the steady-state
solutions of the conservation equations appears to exclude the stagnant wedge
solution to the shooting problem. Although the exclusion of this solution as a
formal consequence of plausible assumptions by Glimm et al. (1985) and others is
initially justifiable, it is worth noting that same assumptions led Glimm to exclude
the solution shown in figure 4(j ). This solution is familiar and occurs in the free
expansion of an inviscid supersonic jet.

A related example of the stagnant wedge solution is the aero-spike phenomenon.
A sharp spike inserted into the free-stream flow ahead of a blunt body in supersonic
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flow causes a separation bubble and an oblique shock wave to be formed ahead
of the body (Moeckel 1951; Stadler & Nielsen 1954). The resulting oblique shock
waves produce less drag than the strong shock produced in the absence of the spike.
Although the tip of the spike represents supersonic flow over an oblique wedge,
only a thin spike is required to stabilize the larger-scale stagnant wedge region given
appropriate downstream boundary conditions.

In the more restrictive case of conventional shock wave interactions, where the
stagnant wedge solution is not observed experimentally, we are forced to eliminate
this solution empirically. Despite the current absence of formal entropy, stability or
other results that consistently reconcile experimental observations across a range of
shock-wave interaction configurations, it remains clear that eventual resolution must
come from approaches that go beyond simple elimination of unwanted solutions by
assumption.

5.6. Set of allowable interaction solutions

Combining the results of § § 5.3–5.5 we have the allowable solutions in the incident
and reflected wave regions, and a rigorous basis for matching the solutions at the
downstream singularities. The set of allowable interactions is then given by all per-
mutations of the allowable configurations in each of the regions, with the constraint
that the configurations be self-consistent with the properties for each elementary wave
established in § § 2–4. We have noted that figure 4 represents a subset of this complete
set of interactions. Full description of the regions of parameter space over which each
of the possible permutations may exist requires recourse to bifurcation methods using
approaches discussed by Glimm (1988), Keller (1987) and Sanderson & Sturtevant
(1993).

6. Linearized unsteady formulation
It is known that shock-wave interaction solutions exhibit bifurcation phenomena

(e.g. the point at which 3 shock and 4 shock interaction solutions cross with one of
the 4 waves being a degenerate Mach line) and fold point behaviour (e.g. the point
of maximum flow deflection angle for a single oblique shock wave where the weak
and strong solutions meet). Such bifurcation phenomena are the root cause of the
non-existence and non-uniqueness problems discussed in § 1. Results from bifurcation
theory (e.g. Keller 1987) formally state that the bifurcation points of steady solutions
are associated with sign changes of the eigenvalues of the linearized unsteady problem
about the bifurcation point. The value of the current formulation then becomes
apparent since we are considering steady-state solutions of the generally unsteady
forms (equations (2.5) and (4.3)) in time and one spatial coordinate, θ . It is possible
therefore that linearization of the current formulation about the steady-state solutions
might lead to results for the open problem of stability for many shock-wave interaction
flow fields.

Consider perturbations of the conserved quantities

z(θ, t) = z0(θ) + z′(θ, t). (6.1)

Expanding the unsteady form (equation (2.5)) about z′ = 0, we have

rA0
z z′

t +
[
B0

z + B0
zz z

′][z0
θ + z′

θ

]
+ C0 + C0

z z′ + O(z′2) = 0, (6.2)
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where generally the notation A0
z =Az|z′ =0 applies. The zeroth-order terms represent

the steady-flow solution and to O(z′) we have

rA0
z z′

t + B0
z z′

θ + B0
zz z

′z0
θ + C0

z z′ ≈ 0. (6.3)

Proceeding by the usual method of Laplace transform and Fourier series leads con-
ceptually to a generalized eigenvalue problem for the growth rates for the unsteady
modes. Realistically, the working out of the flux derivatives is complicated and con-
sideration must be given to the convergence of the integral transforms involved along
with the requirement to use generalized functions for the shock jump discontinuities.
An alternative approach would be to use the linearized form in the smooth regions
and to match this with boundary conditions provided by a linearized form of the
weak solutions (4.3). The stability analyses for one-dimensional shock waves due to
Swan & Fowles (1984) and D’yakov (1954) provide a prototype. Full working out of
the details with the necessary rigour lies beyond the scope of the current paper, and
we present the suggestion here in the hope that it might be of value to others.

7. Conclusions
We have studied the interaction of shock waves in two spatial dimensions in steady

flow by considering local solutions of the Euler equations about a point that are
constant along each ray and therefore exhibit no length scale. In this way, the
conservation equations are reduced to a set of linear ordinary differential equations.
Examination of the singularities of this set of equations produces families of solutions
that reproduce many standard results in gasdynamics. Weak solutions of the system of
equations reproduce classical results for oblique shock waves and formally introduce
shear layers as admissible solutions. We show that a requirement for geometric
regularity of the intersection of the incident waves and an entropy condition formally
restricts the allowable solutions for interacting waves to no more than two incident and
two reflected waves. Formal examination of the downstream matching requirements
for shock-wave interaction problems shows that shear layer and stagnant wedge
matching conditions are the only two possibilities admitted. The steady-state conserva-
tion equations do not preclude the existence of the stagnant wedge matching condition.
Classical results from gasdynamics are shown to follow in a consistent constructive
manner directly from the single assumption that the local solution exhibits no length
scale. By retaining the time-dependent terms and linearizing about the steady-flow
solutions, an approach is suggested for investigating the open problem of the stability
of shock-wave interactions.
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